Older Adults Anesthesia Evidence Synthesis
  • Home
  • Balance Tables
  • GRADE
  • Key Question
    • Expanded Preoperative Evaluation
    • Neuraxial versus General Anesthesia
    • TIVA versus Inhalation Anesthesia
    • Potentially Inappropriate Medications
    • Delirium Prophylaxis
  • Appendix
    • Expanded Preoperative Evaluation: study/patient characteristics
    • Neuraxial versus General Anesthesia: study/patient characteristics
    • TIVA versus Inhalation Anesthesia: study/patient characteristics
    • Delirium Prophylaxis: study/patient characteristics
    • Study-level evidence tables
    • Outcome importance ratings & rankings
    • Draft protocol
  • About

TIVA versus Inhaled (volatile) Anesthesia

  • Key Question
  • Balance Tables
  • Outcomes Reported
  • Included Studies
    • Design, centers, country, and surgery
    • Country Summary
  • Comparators
    • Randomized
    • Nonrandomized
  • Delirium Incidence
    • Pooled
      • Randomized
      • Nonrandomized
  • Neurocognitive Disorder
      <30 days
    • Pooled
  • Neurocognitive Disorder
      30 days to 1 year
    • Pooled
  • Physical Function
  • Complications
    • Pooled
      • Myocardial Infarction
      • Cardiac Arrest
      • Bradycardia
      • Hypotension
      • Stroke
      • Acute Kidney Injury
      • Pneumonia
      • Pulmonary Embolism
      • Respiratory Failure
  • Patient Satisfaction
    • Pooled
  • Length of Stay
    • Pooled
  • Discharge Location
  • Mortality
    • Pooled
  • Risk of Bias
    • Randomized
    • Nonrandomized
  • References

TIVA versus Inhaled (volatile) Anesthesia

Key Question

Among older patients undergoing surgery with general anesthesia, does the use of intravenous agents for maintenance of anesthesia improve postoperative outcomes compared with inhaled agents?

Balance Tables

Benefits, harms, and strength of evidence (GRADE) for TIVA versus inhalation anesthesia.

Outcome RCT NRSI* TIVA Inhaled GRADE† Effect Estimate (95% CI)
N (Total) N (Total)
Delirium 8 143 (1,001) 158 (995)

⨁⨁◯◯

RR 0.94 (0.62–1.43)
5 10,297 (142,850) 32,955 (427,929)

⨁◯◯◯

OR 1.01 (0.39–2.63)
Neurocognitive disorder <30 days 5 125 (704) 175 (703)

⨁⨁⨁◯

RR 0.72 (0.54–0.96)
1 24 (160) 24 (119)

⨁◯◯◯

RR 0.74 (0.44–1.24)
Neurocognitive disorder days to 1 yr 1 4 (96) 6 (97)

⨁◯◯◯

RR 0.67 (0.20–2.31)
3 40 (252) 32 (207)

⨁◯◯◯

RR 1.09 (0.72–1.66)
Physical function none none
Complications 10 9

⨁⨁◯◯
⨁◯◯◯

see below
Patient satisfaction 3 90 (109) 82 (141)

⨁⨁◯◯

RR 1.39 (1.19–1.63)‡
Length of stay (days) 6 (1,343) (1,341)

⨁◯◯◯

MD 0.0 (-1.5 to 1.4)
4 (147,809) (432,893)

⨁◯◯◯

MD -0.6 (-2.4 to 1.5)
Discharged to institution 1 8 (9) 26 (20)

⨁◯◯◯

RR 1.46 (0.69–3.41)
Mortality (in-hospital and 30-day) 4 11 (377) 8 (375)

⨁◯◯◯

RR 1.17 (0.47–2.89)
5 11 (566) 8 (565) RD/1000 4.1 (-7.7 to 16.0)
7 1,876 (149,333) 5,175 (434,640)

⨁◯◯◯

OR 0.93 (0.47–1.85)
RD/1000 -0.32 (-2.20 to 1.55)
Mortality (1-year) 1 1 5 (64) 4 (70)

⨁◯◯◯

RR 1.47 (0.42–5.18)
RD/1000 24.2 (-46.5 to 95.0)
RCT: randomized clinical trial; NRSI: nonrandomized studies of interventions; GRADE: Grades of Recommendation, Assessment, Development, and Evaluation; RR: risk ratio; MD: mean difference; RD: risk difference.
* Results from nonrandomized designed shown only when evidence not available from randomized trials.
† Very low: ⨁◯◯◯; Low: ⨁⨁◯◯; Moderate: ⨁⨁⨁◯; High: ⨁⨁⨁⨁.
‡ Comparing higher/highest category or categories with lower ones.

Included complications and strength of evidence (GRADE) for TIVA versus inhalation anesthesia.

Outcome RCT NRSI TIVA Inhaled GRADE* Effect Estimate (95% CI)
N (Total) N (Total)
Myocardial infarction 1 5 4,027 (157,987) 8,898 (443,067)

⨁⨁◯◯

OR 0.90 (0.85–0.96)
2 5 4,027 (158,031) 8,898 (443,111) RD/1000 -1.9 (3.0 to -0.7)†
Cardiac arrest 1 1 5 (1,972) 1 (1,799)

⨁◯◯◯

RR 3.47 (0.57–21.2)‡
RD/1000 1.7 (-0.7 to 4.1)‡
Bradycardia 4 1 20 (416) 16 (416)

⨁◯◯◯

RR 1.57 (0.42–5.81)
RD/1000 13.4 (-43.1 to 69.9)
Hypotension 2 2 226 (919) 237 (884)

⨁◯◯◯

RR 0.99 (0.91–1.07
RD/1000 -24.6 (-58.6 to 9.4)
Stroke 1 1 37 (9,320) 42 (9,319)

⨁◯◯◯

OR 1.14 (0.73–1.78)
RD/1000 0.5 (-2.4 to 1.3)†
Acute kidney injury 1 5 823 (144,819) 2,283 (430,321)

⨁⨁◯◯

OR 0.99 (0.88–1.11)
RD/1000 -0.2 (-4.4 to 4.1)†
Pneumonia 3 2 293 (9,264) 335 (9,270)

⨁⨁◯◯

OR 0.80 (0.39–1.64)
RD/1000 -3.6 (-8.3 to 1.2)†
Pulmonary edema 2 0 (143,939) 3 (428,897)

⨁◯◯◯

    —     —§
Pulmonary embolism 2 3 212 (153,413) 465 (438,369)

⨁◯◯◯

OR 1.32 (1.13–1.53)
RD/1000 0.2 (-2.0 to 2.4)†
Respiratory failure 2 2 670 (151,981) 1,718 (437,111)

⨁◯◯◯

OR 0.87 (0.79–0.95)
RD/1000 0.0 (-2.0 to 2.0)†
RCT: randomized clinical trial; NRSI: nonrandomized studies of interventions; GRADE: Grades of Recommendation, Assessment, Development, and Evaluation; RR: risk ratio; OR: odds ratio; RD: risk difference.
* Very low: ⨁◯◯◯; Low: ⨁⨁◯◯; Moderate: ⨁⨁⨁◯; High: ⨁⨁⨁⨁.
† Approximate owing to pruning in studies using propensity matching.
‡ Common effects model.
§ No events in 1 study; 3 in the other.

Outcomes Reported

Table 2. Publications reporting dichotomous or count outcomes (not necessarily unique studies)..

Outcome RCT, N = 34 NR Trial, N = 1 Prosp Coh, N = 3 Retro Coh, N = 13
ADL — — — —
Complications 10 (29%) 1 (100%) — 11 (85%)
DNCR/POCD 9 (26%) 1 (100%) 2 (67%) 1 (7.7%)
Delirium 8 (24%) — 1 (33%) 4 (31%)
Delirium duration — — — —
Discharge location — — — 1 (7.7%)
Mortality 5 (15%) — — 7 (54%)
Opioid use 2 (5.9%) — — —
Pain 1 (2.9%) — — —
QoR — — — —
Readmission 1 (2.9%) — — —
Satisfaction 3 (8.8%) — — —
ADL: activities of daily living; NCR: neurocognitive recovery; POCD: postoperative neurocognitive disorder; QoR: quality of recovery; RCT: randomized clinical trial; NR Trial: non-randomized trial; Prosp Coh: prospective cohort; Retro Coh: retrospective cohort.

Table 3. Publications reporting continuous outcomes (not necessarily unique studies).

Outcome RCT, N = 34 NR Trial, N = 1 Prosp Coh, N = 3 Retro Coh, N = 13
Delirium duration 1 (2.9%) — — —
Length of stay 6 (18%) — — 4 (31%)
Opioid use 3 (8.8%) — — —
RCT: randomized clinical trial; NR Trial: non-randomized trial; Prosp Coh: prospective cohort; Retro Coh: retrospective cohort.

Table 4. Publications reporting likert or ordinal outcomes (not necessarily unique studies).

Outcome RCT, N = 34 NR Trial, N = 1 Prosp Coh, N = 3 Retro Coh, N = 13
ADL — — — —
DNCR/POCD 16 (47%) 1 (100%) — —
Delirium 3 (8.8%) — — —
Complications — — — —
Pain 4 (12%) — — —
Quality of life — — — —
QoR 1 (2.9%) — — —
Satisfaction — — — —
ADL: activities of daily living; NCR: neurocognitive recovery; POCD: postoperative neurocognitive disorder; QoR: quality of recovery; RCT: randomized clinical trial; NR Trial: non-randomized trial; Prosp Coh: prospective cohort; Retro Coh: retrospective cohort.

Included Studies

See Appendix for detailed summary study and patient characteristics including primary outcomes.

Table 5. Number of studies by design.

Design Studies
Randomized Clinical Trial 34
Nonrandomized Trial 1
Prospective Cohort 3
Retrospective Cohort 13
Total 51

Design, centers, country, and surgery

Table 6. Study design, enrollment, centers, country, and surgery (see References for citations).

ID Study Centers Enrolled Countrya Surgery
Randomized Clinical Trial
20083

Kalimeris 2013

1 50 Greece Cardiac
18510

Kang 2023

1 102 South Korea Cardiac
13719

Ozer 2017

1 88 Turkey Cardiac
4033

Qiao 2015

1 90 Chinaa ENT
16931

Qiao 2023

1 69 Chinaa ENT
15440

Fazel 2017

1 60 Irana GI/Abdominal
11652

Forsmo 2016

1 653 Norway GI/Abdominal
16559

Geng 2017

1 150 Chinaa GI/Abdominal
16572

Ishii 2016

1 59 Japan GI/Abdominal
17

Li 2021a

4 544 Chinaa GI/Abdominal
385

Nishikawa 2004

1 50 Japan GI/Abdominal
331

Nishikawa 2007a

1 30 Japan GI/Abdominal
16622

Tang 2014

1 220 Chinaa GI/Abdominal
18152

Yang 2022

1 80 Chinaa GI/Abdominal
9011

Ding 2021

1 180 Chinaa GI/Abdominal|Ortho|ENT
2794

Rohan 2005

1 45 Ireland Gyn|Urol
5915

Jellish 2003

1 60 USA Headneck
16557

Epple 2001

1 124 Germany Ophtho
16587

Luntz 2004

1 96 Germany Ophtho
18987

Mei 2020b

1 240 Chinaa Ortho
285

Tanaka 2017

1 100 USA Ortho
18378

Farrer 2023

2 200 USA Ortho|Spine
16726

Liang 2022

1 224 Chinaa Spine
16556

Egawa 2016

1 148 Japan Thoracic
150

Qin 2019

1 104 Chinaa Thoracic
20412

Tian 2021

1 62 Chinaa Thoracic
10

Zhang 2018a

1 392 Chinaa Thoracic
376

Zangrillo 2011

1 153 Italy Thoracic|Vasc
16547

Celik 2011

1 100 Turkey Urol
534

Cai 2012

1 2,216 Chinaa Variousb
17101

Cao 2023

14 1,228 Chinaa Variousb
6506

Dai 2021

1 164 Chinaa Variousb
18867

Villalobos 2023

1 140 USA Variousb
447

Lindholm 2013

1 231 Norway Vasc
Nonrandomized Trial
13116

Zhou 2021

1 265 Chinaa Thoracic
Prospective Cohort
17080

Deiner 2014

1 76 USA General|Spine|Thoracic|Urol
155

Deiner 2015

1 105 USA General|Thoracic|Urol
22

Konishi 2018

1 300 Japan Ortho
Retrospective Cohort
332

Goins 2018

1 116 USA Cardiac
234

Jakobsen 2007

3 10,535 Denmark Cardiac
20764

Kadoi 2007

1 109 Japan Cardiac
17551

Hasselager 2022

22,179 Denmark GI/Abdominal
15331

Koo 2016

1 1,934 South Africa GI/Abdominal
14821

Shimizu 2010

1 265 Japan GI/Abdominal
18477

Huang 2023b

1 46 Taiwan Ortho
383

Kishimoto 2018

c 21,899 Japan Ortho
18986

Chang 2024

1 281 South Korea Spine
132

Oh 2019

1 3,084 South Korea Thoracic
6964

Cho 2021

1 3,045 South Korea Variousb
1134

Park 2020

1 1,254 South Korea Variousb
16890

Yoshimura 2022

1,730 738,600 Japan Variousb
GI: gastrointestinal; Ortho: orthopedic; Ent: ear, nose, and throat; Neuro: neurological; Oralmax: oral maxillofacial; Vasc: vascular.
a Non very-high Human Development Index country.
b Described as various or more than 4 different types of surgery.
c National national administrative claims database.

Country Summary

Table 7. Summary of studies by country where conducted.

N = 51a
Country
    China 16 (31%)
    Japan 9 (18%)
    USA 7 (14%)
    South Korea 5 (9.8%)
    Denmark 2 (3.9%)
    Germany 2 (3.9%)
    Norway 2 (3.9%)
    Turkey 2 (3.9%)
    Greece 1 (2.0%)
    Iran 1 (2.0%)
    Ireland 1 (2.0%)
    Italy 1 (2.0%)
    South Africa 1 (2.0%)
    Taiwan 1 (2.0%)
a n (%)

Comparators

Randomized

Table 8. Selected characteristics of randomized clinical trials.

Study N  Arm ASA     Ageb MMSEb Inhaled TIVA
PSa Des Iso Sev Fen Pro Rem Suf Oth
Gastrointestinal/Abdominal

Nishikawa 2004

25 Inhaled 12  

71.0 (7.0)

✓
25 TIVA

71.0 (8.0)

●

Nishikawa 2007a

15 Inhaled 12  

70.9 (6.5)

✓
15 TIVA

71.2 (5.3)

●c

Tang 2014

99 Inhaled

70.0 (4.3)

25.0 (1.7)

✓ ○
101 TIVA

69.6 (4.8)

24.6 (1.7)

●

Forsmo 2016

153 Inhaled 123 

66.0 [19-93]

✓d ✓d ○ ○
154 TIVA

65.0 [23-89]

● ●

Ishii 2016

30 Inhaled

76.5 (4.5)

✓
29 TIVA

77.3 (4.6)

●

Fazel 2017

30 Inhaled

71.0 (2.6)

27.3 (1.9)

✓
30 TIVA

73.0 (3.2)

27.2 (2.4)

●

Geng 2017

50 Inhaled  23 

28.9 (1.4)

✓
50 Inhaled

29.4 (1.9)

✓
50 TIVA

29.2 (1.5)

●

Li 2021a

272 Inhaled

65.0 {62-69}

29 {28-30}

✓ ○
272 TIVA

64.0 {62-68}

29 {28-30}

● ●

Yang 2022

40 Inhaled 12  

71.8 (2.1)

29.7 (0.4)

✓
40 TIVA

72.0 (3.1)

29.6 (0.4)

●
Various

Ding 2021

90 Inhaled 12  

71.3 (5.6)

27.0 (2.7)

✓
90 TIVA

70.2 (4.3)

26.0 (2.5)

●

Rohan 2005

15 Inhaled

73.8 [67-86]

28.0 [25-30]

✓ ○
15 TIVA

72.9 [65-83]

27.0 [25-30]

● ●

Farrer 2023

99 Inhaled

73.6 (5.4)

✓
100 TIVA

72.9 (5.4)

● ●

Zangrillo 2011

44 Inhaled 1234

65.0 (11.8)

✓ ○
44 TIVA

64.0 (12.2)

●

Cai 2012

1,000 Inhaled

69.3 (5.1)

27.4 (1.1)

✓ ○ ○
1,000 TIVA

71.2 (3.8)

27.2 (1.1)

● ●

Dai 2021

81 Inhaled  234

72.0 (7.0)

✓
83 TIVA

73.0 (8.0)

● ●

Cao 2023

597 Inhaled 123 

71.0 [65-88]

28 {26-30}

✓
598 TIVA

72.0 [65-88]

28 {26-30}

●

Villalobos 2023

54 Inhaled 1234

67.5 {64-71}

29 {27-29}

✓
53 TIVA

69.0 {64-73}

29 {28-29}

●
Thoracic

Egawa 2016

72 Inhaled 123 

72.0 {63-72}

30 {28-30}

✓
72 TIVA

69.0 {63-73}

30 {29-30}

●

Zhang 2018a

190 Inhaled 123 

72.4 (5.6)

28.3 (1.7)

✓
189 TIVA

72.8 (5.5)

28.2 (1.7)

●

Qin 2019

52 Inhaled

67.6 (2.5)

28.6 (1.0)

✓
52 TIVA

67.6 (2.5)

28.8 (1.0)

●

Tian 2021

31 Inhaled 12  

65.5 (16.2)

28.9 (1.5)

✓
31 TIVA

68.3 (13.5)

28.3 (1.4)

●
Ophthalmologic

Epple 2001

62 Inhaled 123 

76.0 (6.0)

✓ ○
62 TIVA

77.0 (6.0)

● ●

Luntz 2004

32 Inhaled 123 

77.0 (7.0)

✓e
32 Inhaled

76.0 (6.0)

✓ ○
32 TIVA

74.0 (7.0)

●
Otolaryngological

Qiao 2015

30 Inhaled

68.0 (3.0)

27.8 (1.8)

✓
30 TIVA

68.0 (2.0)

28.6 (1.1)

●

Qiao 2023

31 Inhaled 12  

66.7 (7.2)

27 {26-29}

✓ ○
32 TIVA

63.9 (5.3)

28 {26-28}

● ●
Orthopedic

Tanaka 2017

45 Inhaled 123 

69.8 (4.3)

✓ ○ ○
45 TIVA

70.6 (5.0)

●

Mei 2020b

103 Inhaled 123 

71.5 (6.8)

26.3 (2.0)

✓
106 TIVA

70.9 (6.7)

26.2 (1.8)

●
Cardiac

Kalimeris 2013

21 Inhaled

69.0 (7.0)

27.5 (2.0)

✓
23 TIVA

67.0 (9.0)

27.0 (3.0)

●

Ozer 2017

40 Inhaled

69.0 (3.0)

28.7 (1.3)

✓ ○
40 TIVA

66.0 (4.0)

28.8 (1.3)

● ●

Kang 2023

48 Inhaled   34

64.5 (9.4)

✓
47 TIVA

66.0 (7.3)

● ●
Urologic

Celik 2011

50 Inhaled 123 

69.8 (3.9)

✓ ○
50 TIVA

69.2 (4.8)

● ●
Head & Neck

Jellish 2003

29 Inhaled   3 

69.2 (1.7)

✓ ○ ○
30 TIVA

72.1 (1.5)

● ●
Vascular

Lindholm 2013

97 Inhaled  234

69.0 (9.0)

✓ ○
96 TIVA

67.0 (9.0)

● ●
Spine

Liang 2022

70 Inhaled  23 

70.1 (3.5)

✓
70 TIVA

69.5 (3.3)

●
TIVA: total intravenous anesthesia; NR: not reported; ASA PS: ASA Physical Status; MMSE: Mini-Mental State Exam; Des: desflurane; Iso: isoflurane; Sev: sevoflurane; Fen: fentanyl; Pro: propofol; Rem: remifentanil; Suf: sufentanil; Oth: other.
a Not reported if none specified.
b Mean Med (SD)[Range]{IQR}.
c Thimylal.
d Induction with sevoflurane; either inhalant used.
e Induction with sevoflurane.

Nonrandomized

Table 9. Selected characteristics of nonrandomized studies.

Study N  Comparator ASA     Agea MMSEa Inhaled TIVA
PS Des Iso Sev Fen Pro Rem Suf
Cardiac - Retrospective Cohort

Jakobsen 2007

5,325 Inhaled

64.9

✓
5,210 TIVA

64.7

● ●

Kadoi 2007

58 Inhaled

63.0 (10.0)

✓
48 TIVA

66.0 (11.0)

●

Goins 2018

32 Inhaled

78.3 (9.0)

✓b ✓ b ○
84 TIVA

79.6 (8.7)

● ●
Various - Retrospective Cohort

Park 2020

386 Inhaled 1234

65.5 (14.8)

c c c
100 TIVA

65.6 (14.9)

● ●

Cho 2021d

1,202 Inhaled   34

62.7 (13.7)

✓b ✓b
1,374 TIVA

65.6 (12.8)

● ●

Yoshimura 2022

427,695 Inhaled

76.3

✓e ✓e ✓e
142,565 TIVA

76.6

●
GI/Abdominal - Retrospective Cohort

Shimizu 2010

84 Inhaled 123 

67.9 (13.6)

✓
84 TIVA

68.1 (14.0)

●

Koo 2016

390 Inhaled 1234

61.7 (13.4)

✓b ✓b
390 TIVA

61.5 (12.4)

● ●

Hasselager 2022

8,722 Inhaled 1234

71.0 {63-78}

✓
8,722 TIVA

71.0 {64-77}

●
General|Spine|Thoracic|Urol - Prospective Cohort

Deiner 2014

36 Inhaled 1234

76.3 (5.8)

27 {26-30}

✓
40 TIVA

73.5 (5.0)

29 {28-30}

●
General|Thoracic|Urol - Prospective Cohort

Deiner 2015

34 Inhaled

73.8

✓
43 TIVA

73.8

●
Ortho - Prospective Cohort

Konishi 2018

121 Inhaled

69.9 (6.3)

28.1 (1.2)

✓
171 TIVA

70.1 (6.7)

28.2 (1.3)

●
Ortho - Retrospective Cohort

Kishimoto 2018

5,140 Inhaled

74.4 (7.4)

✓
5,140 TIVA

74.5 (7.2)

●

Huang 2023b

26 Inhaled    4

85.6 (7.8)

✓ ✓
20 TIVA

83.8 (9.1)

●
Thoracic - Retrospective Cohort

Oh 2019

1,477 Inhaled 123 

65.0 (10.4)

✓ ○ ○
1,395 TIVA

65.0 (10.0)

● ●
Spine - Retrospective Cohort

Chang 2024

140 Inhaled 123 

72.9 (4.7)

✓
141 TIVA

72.4 (4.5)

●
Thoracic - Nonrandomized Trial

Zhou 2021

116 Inhaled 12  

63.4 (17.1)

25.9 (1.2)

✓
149 TIVA

67.2 (15.1)

26.1 (1.4)

●
TIVA: total intravenous anesthesia; NR: not reported; ASA PS: ASA Physical Status; MMSE: Mini-Mental State Exam; Des: desflurane; Iso: isoflurane; Sev: sevoflurane; Fen: fentanyl; Pro: propofol; Rem: remifentanil; Suf: sufentanil.
a Mean Med (SD)[Range]{IQR}.
b Either of the two inhalent agents used.
c Agent used not specified.
d End-stage renal disease patients.
e Any agent used.

Delirium Incidence

Table 10. Delirium incidence and days of ascertainment during hospitalization.

Study  N Arm Scale Day(s)a Incidence Proportion RR OR (95% CI)
N (%) 0 – 100%
GI/Abd – Randomized Clinical Trial

Nishikawa 2004

25 Inhaled DRS 3 0 (0)
25 TIVA 4 (16.0)

Nishikawa 2007a

15 Inhaled DRS 3 2 (13.3)

—

15 TIVA 3 (20.0)

1.50 (0.29-7.73)

Ishii 2016

30 Inhaled CAM Stay 8 (26.7)

—

29 TIVA 2 (6.9)

0.26 (0.06-1.12)

Ortho – Randomized Clinical Trial

Tanaka 2017

45 Inhaled CAM 2 0 (0)
45 TIVA 1 (2.2)

Mei 2020b

103 Inhaled CAM 3 24 (23.3)

—

106 TIVA 35 (33.0)

1.42 (0.91-2.21)

Various – Randomized Clinical Trial

Dai 2021

81 Inhaled NS Stay 36 (44.4)

—

83 TIVA 35 (42.2)

0.95 (0.67-1.35)

Cao 2023

597 Inhaled CAM 7 74 (12.4)

—

598 TIVA 50 (8.4)

0.67 (0.48-0.95)

Farrer 2023

99 Inhaled CAM 3 14 (14.1)

—

100 TIVA 13 (13.0)

0.92 (0.46-1.85)

Cardiac – Retrospective Cohort

Goins 2018

32 Inhaled CAM 2 11 (34.4)

—

84 TIVA 12 (14.3)

0.22 (0.06-0.79)b

Various – Prospective Cohort

Deiner 2014

36 Inhaled CAM 3 8 (22.2)

—

40 TIVA 6 (15.0)

0.62 (0.19-1.99)c

Various – Retrospective Cohort

Yoshimura 2022

427,695 Inhaled ICD-10d Stay 32,912 (7.7)

—

142,565 TIVA 10,269 (7.2)

0.93 (0.91-0.95)e

Ortho – Retrospective Cohort

Huang 2023b

26 Inhaled NS Stay 2 (7.7)

—

20 TIVA 3 (15.0)

2.12 (0.32-14.07)c

Spine – Retrospective Cohort

Chang 2024

140 Inhaled KNDSS Stay 22 (15.7)

—

141 TIVA 7 (5.0)

4.12 (1.55-10.95)

RR: risk ratio; OR: odds ratio; DRS: Delirium Rating Scale; CAM: Confusion Assessment Method; KNDSS: Korean Nursing Delirium Screening Scale; NS: not specified.
a Day(s) over which incidence proportion assessed. Stay indicates duration of hospitalization.
b Adjusted from multivariable model.
c Calculated crude odds ratio.
d Or new antipsychotic prescription.
e Propensity score matched.

Pooled

Randomized

Figure 1. Delirium incidence (randomized clinical trials).

RR: risk ratio; D1: bias arising from the randomization process; D2: bias due to deviations from intended interventions; D3: bias due to missing outcome data; D4: bias in measurement of the outcome; D5: bias in selection of the reported result: All: overall risk of bias.
Risk of bias ratings: low +, some concerns ?, high – .
Continuity correction of 0.5 added to studies with no events in one arm.

Meta-analysis methods detail.

- Mantel-Haenszel method (common effect model)
- Inverse variance method (random effects model)
- Restricted maximum-likelihood estimator for τ2
- Q-Profile method for confidence interval of τ2 and τ
- Hartung-Knapp adjustment for random effects model (df = 7)
- Hartung-Knapp prediction interval (df = 6)
- Continuity correction of 0.5 in studies with zero cell frequencies

Figure 2. Delirium incidence in randomized clinical trials — risk difference per 100. .

Figure 3. Delirium incidence (small study effects).

Figure 4. Control arm/baseline risk (inhaled anesthesia) and risk ratios.

No suggestion for dependence of risk ratio on baseline risk.

Figure 5. Delirium incidence summary risk of bias in randomized clinical trials (weighted).

Nonrandomized

Figure 6. Delirium incidence (nonrandomized designs).

D1: Bias due to confounding; D2: Bias in selection of participants into the study; D3: Bias in classification of interventions; D4: Bias due to deviations from intended interventions; D5: Bias due to missing data; D6: Bias in measurement of outcomes; D7: Bias in selection of reported results; All: overall risk of bias (ratings: low ++, moderate +, serious -, critical - - ; NI: no information; NA: not applicable).
Note: adjusted odds ratios pooled from Yoshimura 2022 (propensity matching); Goins 2018 and Chang 2022 (multivariable adjustment).

Meta-analysis methods detail.

- Inverse variance method
- Restricted maximum-likelihood estimator for τ2
- Q-Profile method for confidence interval of τ2 and τ

Neurocognitive Disorder
  <30 days

Table 11. Neurocognitive disorder <30 days incidence and ascertainment (randomized and nonrandomized designs). Table includes only studies conducting cognitive testing at day 3 or later.

Study  N Comparator Preop Instrument Dayc Neurocognitive Disorder <30 days
MMSEa MMSE MoCA Multipleb NS N (%) 0 — 100% RR (95% CI)
Randomized Clinical Trial — Gastrointestinal/Abdominal

Tang 2014

99 Inhaled

25.0 (1.7)

✓d

7 33 (33.3)
—
101 TIVA

24.6 (1.7)

30 (29.7)
0.89 (0.59-1.34)

Geng 2017

50 Inhaled

28.9 (1.4)

✓e,f

3 10 (20.0)
—
50 Inhaled

29.4 (1.9)

15 (30.0)
1.50 (0.75-3.01)
50 TIVA

29.2 (1.5)

2 (4.0)
0.20 (0.05-0.87)

Li 2021a

272 Inhaled

29 {28-30}

✓d

7 51 (18.8)
—
272 TIVA

29 {28-30}

41 (15.1)
0.80 (0.55-1.17)
Randomized Clinical Trial — Thoracic

Egawa 2016

72 Inhaled

30 {28-30}

✓f

5 24 (33.3)
—
72 TIVA

30 {29-30}

16 (22.2)
0.67 (0.39-1.15)

Zhang 2018a

190 Inhaled

28.3 (1.7)

✓d

7 44 (23.2)
—
189 TIVA

28.2 (1.7)

28 (14.8)
0.64 (0.42-0.98)
Randomized Clinical Trial — Spine

Liang 2022

70 Inhaled

✓g

7 23 (32.9)
—
70 TIVA
10 (14.3)
0.43 (0.22-0.84)
Prospective Cohort — Orthopedic

Konishi 2018

119 Inhaled

28.1 (1.2)

✓d

7 24 (20.2)
—
160 TIVA

28.2 (1.3)

24 (15.0)
0.74 (0.44-1.24)
MMSE: Mini-Mental State Exam; MoCA: MoCA: Montreal Cognitive Assessment; NS: not specfied; RR: risk ratio; CI: confidence interval.
a Mean Med (SD)[Range]{IQR}.
b Failed 2 or more tests.
c Day of assessment.
d Z ≥1.96.
e Digit Span Test; Digit Symbol Test; Grooved Pegboard Test; Mini-Mental State Examination; Rey Auditory Verbal Learning; Trail Marking Test A.
f Difference from baseline >20%.
g Difference from baseline ≥1 SD.

Pooled

  

Figure 7. Neurocognitive disorder <30 days assessed at postoperative day 5 or later (randomized clinical trials).

RR: risk ratio; D1: bias arising from the randomization process; D2: bias due to deviations from intended interventions; D3: bias due to missing outcome data; D4: bias in measurement of the outcome; D5: bias in selection of the reported result: All: overall risk of bias.
Risk of bias ratings: low +, some concerns ?, high – .
Four trials conducted in China and one each in Norway (Lindholm 2013) and Japan (Egawa 2016).
Including Geng 2017 assessments at day 3 — RR 0.66 (95% CI, 0.54–0.81; prediction interval, 0.54–0.91)

Meta-analysis methods detail

- Mantel-Haenszel method (common effect model)
- Inverse variance method (random effects model)
- Restricted maximum-likelihood estimator for τ2
- Q-Profile method for confidence interval of τ2 and τ
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Figure 8. Neurocognitive disorder <30 days assessed at postoperative day 5 or later (randomized clinical trials; risk difference per 100).

Figure 9. Neurocognitive disorder <30 days assessed at postoperative day 5 or later (small study effects).

Too few studies to test for the presence of small study effects.

Figure 10. Neurocognitive disorder <30 days summary risk of bias from randomized clinical trials (weighted).

Neurocognitive Disorder
  30 days to 1 year

Table 12. Neurocognitive disorder ≥30 days (cognitive dysfunction after 30 days) and ascertainment.

Study  N Comparator Preop Instrument Dayb Neurocognitive Disorder ≥30 days
MMSEa MMSE MoCA Other NS N (%) 0 — 100% RR (95% CI)
Randomized Clinical Trial

Lindholm 2013

97 Inhaled
✓ 30 6 (6.2)
—
96 TIVA
4 (4.2)
0.67 (0.20-2.31)
Prospective Cohort

Deiner 2015

34 Inhaled
✓c 90 9 (26.5)
—
43 TIVA
12 (27.9)
1.05 (0.50-2.21)

Konishi 2018

115 Inhaled

28.1 (1.2)

✓d 90 10 (8.7)
—
161 TIVA

28.2 (1.3)

17 (10.6)
1.21 (0.58-2.55)
Retrospective Cohort

Kadoi 2007

58 Inhaled
✓e,f 180 13 (22.4)
—
48 TIVA
11 (22.9)
1.02 (0.50-2.07)
Mini-Mental State Exam; MoCA: Montreal Cognitive Assessment; NS: not stated; RR: risk ratio.
Pooled RR 1.10 (95% CI, 0.72–1.68)
a Mean Med (SD)[Range]{IQR}.
b Day of assessment.
c Uniform Data Set of the Alzheimer’s Disease Centers.
d Z ≥1.96.
e Digit Span Test; Grooved Pegboard Test; Mini-Mental State Examination; Rey Auditory Verbal Learning; Trail Marking Test A; Trail Making Test B.
f Failed 2 or more tests.

Pooled

  

Figure 11. Neurocognitive disorder ≥30 days (nonrandomized designs).

D1: Bias due to confounding; D2: Bias in selection of participants into the study; D3: Bias in classification of interventions; D4: Bias due to deviations from intended interventions; D5: Bias due to missing data; D6: Bias in measurement of outcomes; D7: Bias in selection of reported results; All: overall risk of bias (ratings: low ++, moderate +, serious -, critical - - ; NI: no information; NA: not applicable).

Meta-analysis methods detail.

- Mantel-Haenszel method (common effect model)
- Inverse variance method (random effects model)
- Restricted maximum-likelihood estimator for τ2
- Q-Profile method for confidence interval of τ2 and τ

Physical Function

No studies

Complications

Table 13. Complications — cardiac, pulmonary, and renal (randomized and nonrandomized designs).

Study  N Arm     Agea Surgery N (%) 0 – 100% RD OR (95% CI)b
Myocardial Infarction – Randomized Clinical Trial

Zangrillo 2011

44 Inhaled

65.0 (11.8)

Various 0 (0)

—

44 TIVA

64.0 (12.2)

0 (0)

0.00% (-4.33, 4.33)

Lindholm 2013

97 Inhaled

69.0 (9.0)

Vascular 5 (5.2)

—

96 TIVA

67.0 (9.0)

3 (3.1)

-2.03% (-7.64, 3.58)

Myocardial Infarction – Retrospective Cohort

Jakobsen 2007

5,325 Inhaled

64.9

Cardiac 2,076 (39.0)

—

5,210 TIVA

64.7

1,891 (36.3)

-2.69% (-4.54, -0.84)

Cho 2021

1,202 Inhaled

62.7 (13.7)

Various 15 (1.2)

—

1,374 TIVA

65.6 (12.8)

6 (0.4)

-0.81% (-1.53, -0.09)

Hasselager 2022

8,722 Inhaled

71.0 {63-78}

GI/Abd 82 (0.9)

—

8,722 TIVA

71.0 {64-77}

88 (1.0)

0.93 (0.69—1.26)

Yoshimura 2022

427,695 Inhaled

76.3

Various 6,717 (1.6)

—

142,565 TIVA

76.6

2,039 (1.4)

0.91 (0.86—0.96)

Huang 2023b

26 Inhaled

85.6 (7.8)

Ortho 3 (11.5)

—

20 TIVA

83.8 (9.1)

0 (0)

-11.54% (-25.79, 2.71)

Cardiac Arrest – Randomized Clinical Trial

Cao 2023

597 Inhaled

71.0 [65-88]

Various 1 (0.2)

—

598 TIVA

72.0 [65-88]

3 (0.5)

0.33% (-0.32, 0.99)

Cardiac Arrest – Retrospective Cohort

Cho 2021

1,202 Inhaled

62.7 (13.7)

Various 0 (0)

—

1,374 TIVA

65.6 (12.8)

2 (0.1)

0.15% (-0.11, 0.40)

Bradycardia – Randomized Clinical Trial

Luntz 2004c

32 Inhaled

77.0 (7.0)

Ophtho 1 (3.1)

—

32 Inhaled

76.0 (6.0)

4 (12.5)

—

32 TIVA

74.0 (7.0)

8 (25.0)

17.19% (0.81, 33.57)d

Nishikawa 2007ae

15 Inhaled

70.9 (6.5)

GI/Abd 2 (13.3)

—

15 TIVA

71.2 (5.3)

0 (0)

-13.33% (-33.06, 6.40)

Zhang 2018af

190 Inhaled

72.4 (5.6)

Thoracic 8 (4.2)

—

189 TIVA

72.8 (5.5)

6 (3.2)

-1.04% (-4.83, 2.76)

Tian 2021c

31 Inhaled

65.5 (16.2)

Thoracic 0 (0)

—

31 TIVA

68.3 (13.5)

1 (3.2)

3.23% (-5.27, 11.72)

Bradycardia – Nonrandomized Trial

Zhou 2021c

116 Inhaled

63.4 (17.1)

Thoracic 1 (0.9)

—

149 TIVA

67.2 (15.1)

5 (3.4)

2.49% (-0.85, 5.84)

Hypotension – Randomized Clinical Trial

Tian 2021c

31 Inhaled

65.5 (16.2)

Thoracic 3 (9.7)

—

31 TIVA

68.3 (13.5)

1 (3.2)

-6.45% (-18.58, 5.67)

Cao 2023g

597 Inhaled

71.0 [65-88]

Various 101 (16.9)

—

598 TIVA

72.0 [65-88]

97 (16.2)

-0.70% (-4.91, 3.52)

Hypotension – Nonrandomized Trial

Zhou 2021c

116 Inhaled

63.4 (17.1)

Thoracic 11 (9.5)

—

149 TIVA

67.2 (15.1)

5 (3.4)

-6.13% (-12.19, -0.06)

Hypotension – Retrospective Cohort

Chang 2024

140 Inhaled

72.9 (4.7)

Spine 122 (87.1)

—

141 TIVA

72.4 (4.5)

123 (87.2)

0.09% (-7.72, 7.91)

Other Cardiac – Randomized Clinical Trial

Zangrillo 2011h

44 Inhaled

65.0 (11.8)

Various 1 (2.3)

—

44 TIVA

64.0 (12.2)

1 (2.3)

0.00% (-6.23, 6.23)

Dai 2021i

81 Inhaled

72.0 (7.0)

Various 2 (2.5)

—

83 TIVA

73.0 (8.0)

2 (2.4)

-0.06% (-4.78, 4.66)

Cao 2023j

597 Inhaled

71.0 [65-88]

Various 9 (1.5)

—

598 TIVA

72.0 [65-88]

13 (2.2)

0.67% (-0.86, 2.19)

Stroke – Randomized Clinical Trial

Cao 2023

597 Inhaled

71.0 [65-88]

Various 3 (0.5)

—

598 TIVA

72.0 [65-88]

3 (0.5)

-0.00% (-0.80, 0.80)

Stroke – Retrospective Cohort

Hasselager 2022

8,722 Inhaled

71.0 {63-78}

GI/Abd 39 (0.4)

—

8,722 TIVA

71.0 {64-77}

34 (0.4)

1.15 (0.72—1.83)

Acute Kidney Injury – Randomized Clinical Trial

Cao 2023

597 Inhaled

71.0 [65-88]

Various 36 (6.0)

—

598 TIVA

72.0 [65-88]

38 (6.4)

0.32% (-2.41, 3.06)

Acute Kidney Injury – Retrospective Cohort

Oh 2019

1,477 Inhaled

65.0 (10.4)

Thoracic 71 (4.8)

—

1,395 TIVA

65.0 (10.0)

69 (4.9)

0.96 (0.53—1.71)

Park 2020

386 Inhaled

65.5 (14.8)

Various 47 (12.2)

—

100 TIVA

65.6 (14.9)

7 (7.0)

0.44 (0.18—0.95)

Yoshimura 2022

427,695 Inhaled

76.3

Various 2,123 (0.5)

—

142,565 TIVA

76.6

706 (0.5)

1.00 (0.91—1.09)

Huang 2023b

26 Inhaled

85.6 (7.8)

Ortho 4 (15.4)

—

20 TIVA

83.8 (9.1)

1 (5.0)

-10.38% (-27.22, 6.45)

Chang 2024

140 Inhaled

72.9 (4.7)

Spine 2 (1.4)

—

141 TIVA

72.4 (4.5)

2 (1.4)

-0.01% (-2.78, 2.76)

Pneumonia – Randomized Clinical Trial

Lindholm 2013

97 Inhaled

69.0 (9.0)

Vascular 13 (13.4)

—

96 TIVA

67.0 (9.0)

9 (9.4)

-4.03% (-12.97, 4.91)

Forsmo 2016

153 Inhaled

66.0 [19-93]

GI/Abd 8 (5.2)

—

154 TIVA

65.0 [23-89]

7 (4.5)

-0.68% (-5.51, 4.14)

Li 2021a

272 Inhaled

65.0 {62-69}

GI/Abd 1 (0.4)

—

272 TIVA

64.0 {62-68}

0 (0)

-0.37% (-1.38, 0.65)

Pneumonia – Retrospective Cohort

Hasselager 2022

8,722 Inhaled

71.0 {63-78}

GI/Abd 303 (3.5)

—

8,722 TIVA

71.0 {64-77}

275 (3.2)

1.11 (0.94—1.31)

Huang 2023b

26 Inhaled

85.6 (7.8)

Ortho 10 (38.5)

—

20 TIVA

83.8 (9.1)

2 (10.0)

-28.46% (-51.32, -5.60)

Pneumothorax – Randomized Clinical Trial

Cao 2023

597 Inhaled

71.0 [65-88]

Various 3 (0.5)

—

598 TIVA

72.0 [65-88]

6 (1.0)

0.50% (-0.48, 1.48)

Pulmonary Embolism – Randomized Clinical Trial

Forsmo 2016

153 Inhaled

66.0 [19-93]

GI/Abd 0 (0)

—

154 TIVA

65.0 [23-89]

2 (1.3)

1.30% (-0.88, 3.48)

Cao 2023

597 Inhaled

71.0 [65-88]

Various 1 (0.2)

—

598 TIVA

72.0 [65-88]

1 (0.2)

-0.00% (-0.46, 0.46)

Pulmonary Embolism – Retrospective Cohort

Cho 2021

1,202 Inhaled

62.7 (13.7)

Various 0 (0)

—

1,374 TIVA

65.6 (12.8)

2 (0.1)

0.15% (-0.11, 0.40)

Hasselager 2022

8,722 Inhaled

71.0 {63-78}

GI/Abd 32 (0.4)

—

8,722 TIVA

71.0 {64-77}

22 (0.3)

1.46 (0.85—2.54)

Yoshimura 2022

427,695 Inhaled

76.3

Various 432 (0.1)

—

142,565 TIVA

76.6

185 (0.1)

1.29 (1.06—1.53)

Pulmonary Edema – Retrospective Cohort

Cho 2021

1,202 Inhaled

62.7 (13.7)

Various 3 (0.2)

—

1,374 TIVA

65.6 (12.8)

0 (0)

-0.25% (-0.57, 0.07)

Yoshimura 2022

427,695 Inhaled

76.3

Various 0 (0)

—

142,565 TIVA

76.6

0 (0)

—

Respiratory Failure – Randomized Clinical Trial

Lindholm 2013

97 Inhaled

69.0 (9.0)

Vascular 9 (9.3)

—

96 TIVA

67.0 (9.0)

6 (6.2)

-3.03% (-10.56, 4.51)

Cao 2023

597 Inhaled

71.0 [65-88]

Various 6 (1.0)

—

598 TIVA

72.0 [65-88]

8 (1.3)

0.33% (-0.89, 1.55)

Respiratory Failure – Retrospective Cohort

Hasselager 2022

8,722 Inhaled

71.0 {63-78}

GI/Abd 216 (2.5)

—

8,722 TIVA

71.0 {64-77}

236 (2.7)

0.91 (0.76—1.10)

Yoshimura 2022

427,695 Inhaled

76.3

Various 1,487 (0.3)

—

142,565 TIVA

76.6

420 (0.3)

0.85 (0.76—0.94)

RD: risk difference; OR: odds ratio; Ophtho: ophthalmologic; GI: gastointestinal; GI: gastrointestinal; Abd: abdominal.
a Mean Med (SD)[Range]{IQR}.
b Odds ratios for propensity-matched studies (risk differences accounting for matching were not reported).
c Definition not reported.
d Compared with combined inhalation arms (differed only in induction agents).
e <50 bpm.
f <50 bpm or ↓30% and require chronotropic agent.
g Systolic blood pressure <90 mm Hg or a decrease of >30% from baseline.
h Atrial fibrillation.
i Cardiac dysfunction.
j Arrhythmia.

Pooled

Note: given the limited number of randomized studies and absence of convincing evidence for any complication, randomized and nonrandomized designs were poole without detriment to any strength of evidence rating. When odds ratios were pooled (to include adjusted results from nonrandomized designs), approximate risk differences were calculated based on the event rate across inhaled anesthetic arms and risk ratio derived from the odds ratio.

Myocardial Infarction

  

Figure 12. Odds ratio for myocardial infarction (randomized and nonrandomized studies).

Cardiac Arrest

  

Figure 13. Risk ratio for cardiac arrest (randomized and nonrandomized studies).

Bradycardia

  

Figure 14. Risk ratio for bradycardia (randomized and nonrandomized studies).

Insufficient data to estimate a valid prediction interval.

Hypotension

  

Figure 15. Risk ratio for hypotension (randomized and nonrandomized studies).

Stroke

  

Figure 16. Odds ratio for stroke (randomized and nonrandomized studies).

Acute Kidney Injury

  

Figure 17. Odds ratio for acute kidney injury complications (randomized and nonrandomized studies).

Pneumonia

  

Figure 18. Risk ratio for pneumonia (randomized clinical trials).

Pulmonary Embolism

  

Figure 19. Odds ratio for pulmonary embolism (randomized and nonrandomized studies).

Respiratory Failure

  

Figure 20. Odds ratio for respiratory failure (randomized and nonrandomized studies).

Patient Satisfaction

Table 14. Patient reported satisfaction.

Study  N Anesth Surgery ASA Agea      N (%) 0 – 100% RD (95% CI)
PS

Epple 2001

62 Inhaled Ophthalmologic 123 

76.0 (6.0)

41 (66.1)b
—
62 TIVA

77.0 (6.0)

58 (93.5)b
27.4% (14.1, 40.7)

Luntz 2004

64 Inhaledc Ophthalmologic 123 

77.0 (7.0)

15 (46.9)d
—
32 TIVA

74.0 (7.0)

23 (71.9)d
17.2% (-2.6, 37.0)

Nishikawa 2007a

15 Inhaled GI/Abdominal 12  

70.9 (6.5)

6 (40.0)e
—
15 TIVA

71.2 (5.3)

9 (60.0)e
20.0% (-15.1, 55.1)
TIVA: total intravenous anesthesia; ASA PS: ASA Physical Status; RD: risk difference.
a Mean (SD).
b Completely satisfied.
c Inhaled arms combined.
d Highly satisfied.
e Very satisfied.

Pooled

  

Figure 21. Risk ratio for patient satisfaction (randomized clinical trials).

Length of Stay

Table 15. Length of stay according to procedure classification and comparator.

Study  N Anesth PSa     Ageb     LOSb 0 – 35 days Country
Randomized Clinical Trial - Cardiac

Kang 2023

48 Inhaled   34

64.5 (9.4)

13.8 (4.6)

South Korea
47 TIVA   34

66.0 (7.3)

12.6 (3.3)

Randomized Clinical Trial - Thoracic

Zhang 2018a

190 Inhaled 123 

72.4 (5.6)

8.0 {6-11}

China
189 TIVA 123 

72.8 (5.5)

9.0 {6-13}

Randomized Clinical Trial - Gastrointestinal/Abdominal

Forsmo 2016

153 Inhaled 123 

66.0 [19-93]

8.0 [2-48]

Norway
154 TIVA 123 

65.0 [23-89]

5.0 [2-50]

Li 2021a

272 Inhaled NR

65.0 {62-69}

14.0 {11-16}

China
272 TIVA NR

64.0 {62-68}

15.0 {12-17}

Randomized Clinical Trial - Various

Dai 2021

81 Inhaled  234

72.0 (7.0)

8.0 (9.9)

China
83 TIVA  234

73.0 (8.0)

9.0 (10.8)

Cao 2023

597 Inhaled 123 

71.0 [65-88]

10.0 {7-14}

China
598 TIVA 123 

72.0 [65-88]

10.0 {7-14}

Retrospective Cohort - Cardiac

Goins 2018

32 Inhaled NR

78.3 (9.0)

5.9 (3.3)

USA
84 TIVA NR

79.6 (8.7)

3.8 (3.3)

Retrospective Cohort - Orthopedic

Kishimoto 2018

5,140 Inhaled NR

74.4 (7.4)

31.4 (14.4)

Japan
5,140 TIVA NR

74.5 (7.2)

32.5 (18.4)

Huang 2023b

26 Inhaled    4

85.6 (7.8)

14.5 (17.8)

Taiwan
20 TIVA    4

83.8 (9.1)

8.8 (3.8)

Retrospective Cohort - Various

Yoshimura 2022

427,695 Inhaled NR

76.3

21.0 (21.0)

Japan
142,565 TIVA NR

76.6

21.0 (21.8)

NR: not reported
a ASA Physical Status.
b Mean Med (SD)[Range]{IQR}.

Pooled

  

Figure 22. Mean difference in length of stay (randomized clinical trials).

Meta-analysis methods detail.

- Inverse variance method
- Restricted maximum-likelihood estimator for τ2
- Q-Profile method for confidence interval of τ2 and τ
- Hartung-Knapp adjustment for random effects model (df = 5)
- Prediction interval based on t-distribution (df = 4)

  

Figure 23. Mean difference in length of stay (nonrandomized designs).

Meta-analysis methods detail.

- Inverse variance method
- Restricted maximum-likelihood estimator for τ2
- Q-Profile method for confidence interval of τ2 and τ
- Prediction interval based on t-distribution (df = 2)


Discharge Location

Table 16. Discharge location in nonrandomized study.

Study  N Arm    Agea Country Discharge to Institution RR (95% CI)
N (%) 0 — 100%
Retrospective Cohort — Orthopedic

Huang 2023b

26 Inhaled

85.6 (7.8)

Taiwan 8 (30.8)
20 TIVA

83.8 (9.1)

9 (45.0)
1.46 (0.69-3.11)
Gen: general; Neur: neuraxial; RR: risk ratio.
a Mean Med (SD)[Range]{IQR}.

Mortality

Table 17. Reported in-hospital, 30-day, and 1-year mortality in randomized clinical trials.

Study N   Arm Surgery ASA Agea Mortality RD (95% CI)
PS N (%) 0 - 100%
Hospital

Dai 2021

81 Inhaled Various  234

72.0 (7.0)

2 (2.5)
—
83 TIVA

73.0 (8.0)

1 (1.2)
-1.3% (-5.4, 2.9)
30-day

Zangrillo 2011

44 Inhaled Various 1234

65.0 (11.8)

0 (0)
—
44 TIVA

64.0 (12.2)

1 (2.3)
2.3% (-3.8, 8.3)

Lindholm 2013

97 Inhaled Vasc  234

69.0 (9.0)

4 (4.1)
—
96 TIVA

67.0 (9.0)

4 (4.2)
0.0% (-5.6, 5.7)

Forsmo 2016

153 Inhaled GI/Abd 123 

66.0 [19-93]

0 (0)
—
154 TIVA

65.0 [23-89]

3 (1.9)
1.9% (-0.6, 4.5)

Zhang 2018a

190 Inhaled Thoracic 123 

72.4 (5.6)

0 (0)
—
189 TIVA

72.8 (5.5)

0 (0)
0.0% (-1.0, 1.0)

Dai 2021

81 Inhaled Various  234

72.0 (7.0)

4 (4.9)
—
83 TIVA

73.0 (8.0)

3 (3.6)
-1.3% (-7.5, 4.9)
1-year

Zangrillo 2011

44 Inhaled Various 1234

65.0 (11.8)

1 (2.3)
—
44 TIVA

64.0 (12.2)

2 (4.5)
2.3% (-5.3, 9.8)
ASA PS: American Society of Anesthesiologists Physical Status; Vasc: vascular; GI/Abd: gastrointestinal/abdominal; RD: risk difference; NR: not reported.
a Mean Med (SD)[Range]{IQR}.


Table 18. Reported in-hospital and 30-day mortality in nonrandomized designs (all retrospective cohort studies).

Study N     Arm Surgery ASA Agea Mortality RD OR (95% CI)b
PS N (%) 0 - 100%
Hospital

Jakobsen 2007

5,325 Inhaled Cardiac NR

64.9

116 (2.2)

—

5,210 TIVA

64.7

172 (3.3)

1.1% (0.5, 1.7)

Park 2020

386 Inhaled Various 1234

65.5 (14.8)

52 (13.5)

—

100 TIVA

65.6 (14.9)

22 (22.0)

1.78 (1.08—2.92)

Yoshimura 2022

427,695 Inhaled Various NR

76.3

4,936 (1.2)

—

142,565 TIVA

76.6

1,665 (1.2)

1.01 (0.96—1.07)

30-day

Jakobsen 2007

5,325 Inhaled Cardiac NR

64.9

151 (2.8)

0.7% (0.1, 1.3)

5,210 TIVA

64.7

172 (3.3)

1.1% (0.5, 1.7)

Goins 2018

32 Inhaled Cardiac NR

78.3 (9.0)

2 (6.2)

—

84 TIVA

79.6 (8.7)

0 (0)

-6.2% (-15.4, 2.9)

Park 2020

386 Inhaled Various 1234

65.5 (14.8)

35 (9.1)

—

100 TIVA

65.6 (14.9)

17 (17.0)

2.6 (1.14—5.93)

Cho 2021

1,202 Inhaled Various   34

62.7 (13.7)

51 (4.2)

—

1,374 TIVA

65.6 (12.8)

22 (1.6)

-2.6% (-4.0, -1.3)

Hasselager 2022

8,722 Inhaled GI/Abd 1234

71.0 {63-78}

278 (3.2)

—

8,722 TIVA

71.0 {64-77}

280 (3.2)

0.99 (0.84—1.18)

Huang 2023b

26 Inhaled Ortho    4

85.6 (7.8)

1 (3.8)

—

20 TIVA

83.8 (9.1)

1 (5.0)

1.2% (-10.9, 13.2)

1-year

Huang 2023b

26 Inhaled Ortho    4

85.6 (7.8)

3 (11.5)

7.7% (-6.6, 22.0)

20 TIVA

83.8 (9.1)

3 (15.0)

11.2% (-6.2, 28.5)

ASA PS: American Society of Anesthesiologists Physical Status; RD: risk difference; GI: gastrointestinal; Abd: abdominal (includes hepatic); Various: more that one procedure category.
a Mean Med (SD)[Range]{IQR}.
b Odds ratios for studies reporting adjusted results (e.g., propensity matched).

Pooled

  

Figure 24. Risk ratio for hospital or 30-day mortality (randomized clinical trials).


Figure 25. Risk ratio for hospital or 30-day mortality (nonrandomized designs).


Figure 26. Risk ratio for 1-year mortality (randomized and nonrandomized).

Risk of Bias

Randomized

Figure 27. Summary risk of bias assessment for randomized clinical trials.

Figure 28. Risk of bias assessments for randomized clinical trials.

Nonrandomized

Figure 29. Summary risk of bias assessment for nonrandomized studies.

Figure 30. Risk of bias assessments for nonrandomized studies.

References

1.
Cai Y, Hu H, Liu P, Feng G, Dong W, Yu B, Zhu Y, Song J, Zhao M: Association between the apolipoprotein E4 and postoperative cognitive dysfunction in elderly patients undergoing intravenous anesthesia and inhalation anesthesia. Anesthesiology 2012; 116:84–93
2.
Cao SJ, Zhang Y, Zhang YX, Zhao W, Pan LH, Sun XD, Jia Z, Ouyang W, Ye QS, Zhang FX, Guo YQ, Ai YQ, Zhao BJ, Yu JB, Liu ZH, Yin N, Li XY, Ma JH, Li HJ, Wang MR, Sessler DI, Ma D, Wang DX: Delirium in older patients given propofol or sevoflurane anaesthesia for major cancer surgery: A multicentre randomised trial. Br J Anaesth 2023; 131:253–65
3.
Cao S-J, Zhang Y, Zhang Y-X, Zhao W, Pan L-H, Sun X-D, Jia Z, Ouyang W, Ye Q-S, Zhang F-X, Guo Y-Q, Ai Y-Q, Zhao B-J, Yu J-B, Liu Z-H, Yin N, Li X-Y, Ma J-H, Li H-J, Wang M-R, Sessler DI, Ma D, Wang D-X: Delirium in older patients given propofol or sevoflurane anaesthesia for major cancer surgery: A multicentre randomised trial. Br J Anaesth 2023 doi:10.1016/j.bja.2023.04.024
4.
Celik JB, Topal A, Erol A, Guven S, Kara I: A comparison of recovery characteristics of sevoflurane and propofol remifentanil anesthesia in geriatric patients. Turkish J Geriatr 2011; 14:208–13
5.
Chang J-E, Min S-W, Kim H, Won D, Lee J-M, Kim TK, Kim C, Hwang J-Y: Association between anesthetics and postoperative delirium in elderly patients undergoing spine surgery: Propofol versus sevoflurane. Global Spine Journal 2022:21925682221110828 doi:10.1177/21925682221110828
6.
Cho HB, Kim MG, Park SY, Song S, Jang YS, Park S, Lee HK, Yoo JH, Chung JW, Kim SH: The influence of propofol-based total intravenous anesthesia on postoperative outcomes in end-stage renal disease patients: A retrospective observation study. PLoS One 2022; 16:e0254014
7.
Dai Z, Lin M, Li Y, Gao W, Wang P, Lin J, Wan Z, Jiang Y: Sevoflurane-remifentanil versus propofol-remifentanil anesthesia during noncardiac surgery for patients with coronary artery disease - a prospective study between 2016 and 2017 at a single center. Med Sci Monit 2022; 27:e929835
8.
Deiner S, Lin HM, Bodansky D, Silverstein J, Sano M: Do stress markers and anesthetic technique predict delirium in the elderly? Dement Geriatr Cogn Disord 2014; 38:366–74
9.
Deiner S, Luo X, Silverstein JH, Sano M: Can intraoperative processed EEG predict postoperative cognitive dysfunction in the elderly? Clin Ther 2015; 37:2700–5
10.
Ding DF, Wang P, Jiang YX, Zhang XP, Shi W, Luo YW: Effects of apolipoprotein epsilon epsilon4 allele on early postoperative cognitive dysfunction after anesthesia. Anaesthesist 2022; 70:60–7
11.
Egawa J, Inoue S, Nishiwada T, Tojo T, Kimura M, Kawaguchi T, Taniguchi S, Furuya H, Kawaguchi M: Effects of anesthetics on early postoperative cognitive outcome and intraoperative cerebral oxygen balance in patients undergoing lung surgery: A randomized clinical trial. Can J Anaesth 2016; 63:1161–9
12.
Epple J, Kubitz J, Schmidt H, Motsch J, Böttiger BW, Martin E, Bach A: Comparative analysis of costs of total intravenous anaesthesia with propofol and remifentanil vs. Balanced anaesthesia with isoflurane and fentanyl. Eur J Anaesthesiol 2001; 18:20–8
13.
Farrer TJ, Monk TG, McDonagh DL, Martin G, Pieper CF, Koltai D: A prospective randomized study examining the impact of intravenous versus inhalational anesthesia on postoperative cognitive decline and delirium. Applied neuropsychology Adult 2023:1–7 doi:10.1080/23279095.2023.2246612
14.
Fazel MR, Kheirkhah P, Atoof F: Sevoflurane versus propofol anesthesia on early postoperative cognitive function in older adults: A randomized controlled trial. Middle East Journal of Anesthesiology 2017; 24:237–41
15.
Forsmo HM, Pfeffer F, Rasdal A, Ostgaard G, Mohn AC, Korner H, Erichsen C: Compliance with enhanced recovery after surgery criteria and preoperative and postoperative counselling reduces length of hospital stay in colorectal surgery: Results of a randomized controlled trial. Colorectal Dis 2022; 18:603–11
16.
Geng YJ, Wu QH, Zhang RQ: Effect of propofol, sevoflurane, and isoflurane on postoperative cognitive dysfunction following laparoscopic cholecystectomy in elderly patients: A randomized controlled trial. J Clin Anesth 2017; 38:165–71
17.
Goins AE, Smeltz A, Ramm C, Strassle PD, Teeter EG, Vavalle JP, Kolarczyk L: General anesthesia for transcatheter aortic valve replacement: Total intravenous anesthesia is associated with less delirium as compared to volatile agent technique. J Cardiothorac Vasc Anesth 2018; 32:1570–7
18.
Hasselager RP, Hallas J, Gögenur I: Inhalation anaesthesia compared with total intravenous anaesthesia and postoperative complications in colorectal cancer surgery: An observational registry-based study†. British Journal of Anaesthesia 2022; 129:416–26
19.
Huang YY, Hui CK, Lau NC, Ng YT, Lin TY, Chen CH, Wang YC, Tang HC, Chen DW, Chang CW: Total intravenous anesthesia for geriatric hip fracture with severe systemic disease. Eur J Trauma Emerg Surg 2023; 49:2139–45
20.
Ishii K, Makita T, Yamashita H, Matsunaga S, Akiyama D, Toba K, Hara K, Sumikawa K, Hara T: Total intravenous anesthesia with propofol is associated with a lower rate of postoperative delirium in comparison with sevoflurane anesthesia in elderly patients. J Clin Anesth 2016; 33:428–31
21.
Jakobsen CJ, Berg H, Hindsholm KB, Faddy N, Sloth E: The influence of propofol versus sevoflurane anesthesia on outcome in 10,535 cardiac surgical procedures. J Cardiothorac Vasc Anesth 2007; 21:664–71
22.
Jellish WS, Sheikh T, Baker WH, Louie EK, Slogoff S: Hemodynamic stability, myocardial ischemia, and perioperative outcome after carotid surgery with remifentanil/propofol or isoflurane/fentanyl anesthesia. J Neurosurg Anesthesiol 2003; 15:176–84
23.
Kadoi Y, Goto F: Sevoflurane anesthesia did not affect postoperative cognitive dysfunction in patients undergoing coronary artery bypass graft surgery. Journal of Anesthesia 2007; 21:330–5
24.
Kalimeris K, Kouni S, Kostopanagiotou G, Nomikos T, Fragopoulou E, Kakisis J, Vasdekis S, Matsota P, Pandazi A: Cognitive function and oxidative stress after carotid endarterectomy: Comparison of propofol to sevoflurane anesthesia. Journal of Cardiothoracic and Vascular Anesthesia 2013; 27:1246–52
25.
Kang D, Kim M, Bae HB, Moon S, Kim J: Comparison of postoperative recovery between balanced and total intravenous anesthesia in patients undergoing off-pump coronary artery bypass (OPCAB) surgery: A prospective, single-blind randomized study. International Journal of Environmental Research and Public Health 2023; 20
26.
Kishimoto M, Yamana H, Inoue S, Noda T, Akahane M, Inagaki Y, Matsui H, Yasunaga H, Kawaguchi M, Imamura T: Suspected periprosthetic joint infection after total knee arthroplasty under propofol versus sevoflurane anesthesia: A retrospective cohort study. Can J Anaesth 2018; 65:893–900
27.
Konishi Y, Evered LA, Scott DA, Silbert BS: Postoperative cognitive dysfunction after sevoflurane or propofol general anaesthesia in combination with spinal anaesthesia for hip arthroplasty. Anaesth Intensive Care 2018; 46:596–600
28.
Koo BW, Sim JB, Shin HJ, Kim DW, Kang SB, Do SH, Na HS: Surgical site infection after colorectal surgery according to the main anesthetic agent: A retrospective comparison between volatile anesthetics and propofol. Korean J Anesthesiol 2016; 69:332–40
29.
Li Y, Chen D, Wang H, Wang Z, Song F, Li H, Ling L, Shen Z, Hu C, Peng J, Li W, Xing W, Pan J, Liang H, Zhou Q, Cai J, He Z, Peng S, Zeng W, Zuo Z: Intravenous versus volatile anesthetic effects on postoperative cognition in elderly patients undergoing laparoscopic abdominal surgery. Anesthesiology 2021; 134:381–94
30.
Liang Y, Xin X, Wang H, Hua W, Wu Y, Wang X, Li P, Zhou T, Wang H: A novel predictive strategy for the incidence of postoperative neurocognitive dysfunction in elderly patients with mild cognitive impairment. Front Aging Neurosci 2022; 14:985406
31.
Lindholm EE, Aune E, Norén CB, Seljeflot I, Hayes T, Otterstad JE, Kirkeboen KA: The anesthesia in abdominal aortic surgery (ABSENT) study: A prospective, randomized, controlled trial comparing troponin t release with fentanyl-sevoflurane and propofol-remifentanil anesthesia in major vascular surgery. Anesthesiology 2013; 119:802–12
32.
Luntz SP, Janitz E, Motsch J, Bach A, Martin E, Böttiger BW: Cost-effectiveness and high patient satisfaction in the elderly: Sevoflurane versus propofol anaesthesia. Eur J Anaesthesiol 2004; 21:115–22
33.
Mei X, Zheng H-L, Li C, Ma X, Zheng H, Marcantonio E, Xie Z, Shen Y: The effects of propofol and sevoflurane on postoperative delirium in older patients: A randomized clinical trial study. Journal of Alzheimer’s Disease 2020; 76:1627–36
34.
Nishikawa K, Kimura S, Shimodate Y, Igarashi M, Namiki A: A comparison of intravenous-based and epidural-based techniques for anesthesia and postoperative analgesia in elderly patients undergoing laparoscopic cholecystectomy. J Anesth 2007; 21:1–6
35.
Nishikawa K, Nakayama M, Omote K, Namiki A: Recovery characteristics and post-operative delirium after long-duration laparoscope-assisted surgery in elderly patients: Propofol-based vs. Sevoflurane-based anesthesia. Acta Anaesthesiol Scand 2004; 48:162–8
36.
Oh TK, Kim J, Han S, Kim K, Jheon S, Ji E: Effect of sevoflurane-based or propofol-based anaesthesia on the incidence of postoperative acute kidney injury: A retrospective propensity score-matched analysis. Eur J Anaesthesiol 2019; 36:649–55
37.
Özer E, Yilmaz R: Effect of different anesthetic techniques on mental outcome in elderly patients undergoing off-pump coronary artery bypass graft surgery. Turkiye Klinikleri Cardiovascular Sciences 2017; 29:17–22
38.
Park J, Lee SH, Lee JH, Min JJ, Kwon JH, Oh AR, Carriere K, Ahn J: Volatile versus total intravenous anesthesia for 30-day mortality following non-cardiac surgery in patients with preoperative myocardial injury. PLoS One 2020; 15:e0238661
39.
Qiao H, Chen J, Huang Y, Pan Y, Lu W, Huang Y, Li W, Shen X: Early neurocognitive function with propofol or desflurane anesthesia after laser laryngeal surgery with low inspired oxygen. Laryngoscope 2023; 133:640–6
40.
Qiao Y, Feng H, Zhao T, Yan H, Zhang H, Zhao X: Postoperative cognitive dysfunction after inhalational anesthesia in elderly patients undergoing major surgery: The influence of anesthetic technique, cerebral injury and systemic inflammation. BMC Anesthesiol 2015; 15:154
41.
Qin Y, Ni J, Kang L, Zhong Z, Wang L, Yin S: Sevoflurane effect on cognitive function and the expression of oxidative stress response proteins in elderly patients undergoing radical surgery for lung cancer. J Coll Physicians Surg Pak 2019; 29:12–5
42.
Rohan D, Buggy DJ, Crowley S, Ling FK, Gallagher H, Regan C, Moriarty DC: Increased incidence of postoperative cognitive dysfunction 24 hr after minor surgery in the elderly. Can J Anaesth 2005; 52:137–42
43.
Shimizu K, Hirose M, Mikami S, Takamura K, Goi T, Yamaguchi A, Morioka K, Ichikawa T, Shigemi K: Effect of anaesthesia maintained with sevoflurane and propofol on surgical site infection after elective open gastrointestinal surgery. J Hosp Infect 2010; 74:129–36
44.
Tanaka P, Goodman S, Sommer BR, Maloney W, Huddleston J, Lemmens HJ: The effect of desflurane versus propofol anesthesia on postoperative delirium in elderly obese patients undergoing total knee replacement: A randomized, controlled, double-blinded clinical trial. J Clin Anesth 2017; 39:17–22
45.
Tang N, Ou C, Liu Y, Zuo Y, Bai Y: Effect of inhalational anaesthetic on postoperative cognitive dysfunction following radical rectal resection in elderly patients with mild cognitive impairment. J Int Med Res 2014; 42:1252–61
46.
Tian HT, Duan XH, Yang YF, Wang Y, Bai QL, Zhang X: Effects of propofol or sevoflurane anesthesia on the perioperative inflammatory response, pulmonary function and cognitive function in patients receiving lung cancer resection. European Review for Medical and Pharmacological Sciences 2021; 21:5515–22
47.
Villalobos D, Reese M, Wright MC, Wong M, Syed A, Park J, Hall A, Browndyke JN, Martucci KT, Devinney MJ, Acker L, Moretti EW, Talbot L, Colin B, Ohlendorf B, Waligorska T, Shaw LM, Whitson HE, Cohen HJ, Mathew JP, Berger M: Perioperative changes in neurocognitive and alzheimer’s disease-related cerebrospinal fluid biomarkers in older patients randomised to isoflurane or propofol for anaesthetic maintenance. British Journal of Anaesthesia 2023; 131:328–37
48.
Yang L, Chen Z, Xiang D: Effects of intravenous anesthesia with sevoflurane combined with propofol on intraoperative hemodynamics, postoperative stress disorder and cognitive function in elderly patients undergoing laparoscopic surgery. Pakistan Journal of Medical Sciences 2022; 38
49.
Yoshimura M, Shiramoto H, Morimoto Y, Koga M: Comparison of total intravenous with inhalational anesthesia in terms of postoperative delirium and complications in older patients: A nationwide population-based study. J Anesth 2022; 36:698–706
50.
Zangrillo A, Testa V, Aldrovandi V, Tuoro A, Casiraghi G, Cavenago F, Messina M, Bignami E, Landoni G: Volatile agents for cardiac protection in noncardiac surgery: A randomized controlled study. J Cardiothorac Vasc Anesth 2011; 25:902–7
51.
Zhang Y, Shan GJ, Zhang YX, Cao SJ, Zhu SN, Li HJ, Ma D, Wang DX: Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br J Anaesth 2018; 121:595–604
52.
Zhou Y, Xu T: Effect of propofol and sevoflurane on perioperative and postoperative outcomes in lung cancer patients after thoracoscopic surgery. Tropical Journal of Pharmaceutical Research 2021; 20:873–9